PIO develops cheap paper test to detect cancer

0
278

February 25, 2014

WASHINGTON: An Indian-American scientist at the Massachusetts Institute of Technology (MIT) has developed a cheap, simple, paper test that can detect cancer, circumventing expensive approaches such as mammograms and colonoscopy.

February 25, 2014

WASHINGTON: An Indian-American scientist at the Massachusetts Institute of Technology (MIT) has developed a cheap, simple, paper test that can detect cancer, circumventing expensive approaches such as mammograms and colonoscopy.

The diagnostic, which works much like a pregnancy test, could reveal within minutes, based on a urine sample, whether a person has cancer, MIT said in a statement announcing the amazing breakthrough, adding that while this approach has helped detect infectious diseases, the new technology will do allow non-communicable diseases to be detected using the same strategy.

The star at the center of this breakthrough us technology is MIT professor and Howard Hughes Medical Institute investigator Sangeeta Bhatia, already a star in the US scientific firmament. The US born Bhatia explained that the paper test essentially relies on nanoparticles that interact with tumor proteins called proteases, each of which can trigger release of hundreds of biomarkers that are then easily detectable in a patient's urine.

"When we invented this new class of synthetic biomarker, we used a highly specialized instrument to do the analysis," said Bhatia, who is also the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science. "For the developing world, we thought it would be exciting to adapt it instead to a paper test that could be performed on unprocessed samples in a rural setting, without the need for any specialized equipment. The simple readout could even be transmitted to a remote caregiver by a picture on a mobile phone."

Cancer rates in developing nations have climbed sharply in recent years, and now account for 70 percent of cancer mortality worldwide. Early detection has been proven to improve outcomes, but screening approaches such as mammograms and colonoscopy, used in the developed world, are too costly to be implemented in settings with little medical infrastructure.

Bhatia, who is also a member of MIT's Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science, is the senior author of a paper describing the particles in the Proceedings of the National Academy of Sciences scheduled this week. The paper's lead authors are graduate student Andrew Warren, postdoc Gabriel Kwong, and former postdoc David Wood.

MIT said that in 2012, Bhatia and colleagues introduced the concept of a synthetic biomarker technology to amplify signals from tumor proteins that would be hard to detect on their own. These proteins, known as matrix metalloproteinases (MMPs), help cancer cells escape their original locations by cutting through proteins of the extracellular matrix, which normally holds cells in place.

The MIT nanoparticles are coated with peptides (short protein fragments) targeted by different MMPs. These particles congregate at tumor sites, where MMPs cleave hundreds of peptides, which accumulate in the kidneys and are excreted in the urine.

In the original version of the technology, these peptides were detected using an instrument called a mass spectrometer, which analyzes the molecular makeup of a sample. However, these instruments are not readily available in the developing world, so the researchers adapted the particles so they could be analyzed on paper, using an approach known as a lateral flow assay — the same technology used in pregnancy tests.

To create the test strips, the researchers first coated nitrocellulose paper with antibodies that can capture the peptides. Once the peptides are captured, they flow along the strip and are exposed to several invisible test lines made of other antibodies specific to different tags attached to the peptides. If one of these lines becomes visible, it means the target peptide is present in the sample. The technology can also easily be modified to detect multiple types of peptides released by different types or stages of disease.

In tests in mice, the researchers were able to accurately identify colon tumors, as well as blood clots. Bhatia says these tests represent the first step toward a diagnostic device that could someday be useful in human patients. "This is a new idea — to create an excreted biomarker instead of relying on what the body gives you," she says. "To prove this approach is really going to be a useful diagnostic, the next step is to test it in patient populations."

Bhatia and her team's research have other Indian inputs: They won a grant from MIT's Deshpande Center for Technological Innovation (funded by Indian-American tech entrepreneur Desh Deshpande) to develop a business plan for a startup that could work on commercializing the technology and performing clinical trials. The research was also funded by, among others, by a Mazumdar-Shaw International Oncology Fellowship, backed by Indian bio-tech entrepreneur Kiran Mazumdar-Shaw.


Courtesy: TNN